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1. Introduction
The Transformer architecture, basis of most Large Language Models (LLMs), has 
facilitated incredible levels of linguistic capability. Far beyond simple token prediction, 
Transformer-based LLMs demonstrate superior perplexity and, at times, even seem to 
converse intelligently. Some of the emergent properties arising from these LLMs present 
as human-like. In the relatively new field of LLM Psychometrics, human-based 
psychometric techniques are leveraged to qualify human-like linguistic traits emanating 
from LLMs. Trait examples include (but are not limited to) Openness, Conscientiousness, 
Extraversion, Agreeableness, and Neuroticism. Given the existence of comparatively 
performant Transformer implementations on virtual biological substrates (i.e., Spiking vs. 
Artificial Neural Networks), the implication is that we can utilize Transformer-based LLMs 
for human linguistic-process modeling. This is somewhat analogous to how we currently 
use experimental models to emulate conserved features.
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➢ Figure 1. Signals, structures, methods, and theories of consciousness across 

scales…
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➢ Table 3: Personality theories and inventories measured in LLM psychometrics 

and their main dimensions or focus.
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3. Astromorphic Transformers
•Mia MZ, Bal M, Sengupta A. Delving deeper into astromorphic transformers. IEEE 
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➢ Figure 1: A model of synaptic communication in the brain. The tripartite synapse consists of 

presynaptic neurons, postsynaptic neurons, and astrocytes. Astrocytes detect neuronal activity 
and respond bidirectionally by emitting gliotransmitters, thereby modulating the intensity and 
duration of synaptic communication.

➢ Figure 2: The neural network architecture showing the three layers. As tokens are presented to the 
network as a d dimensional vector, there are d neurons in both the input and output layers. The 
hidden layer has m neurons. Solid lines indicate active operations; therefore, Hneuron and Hastro 
are learned during write mode but utilized during read mode.

8. Conclusion
•We posit here that Transformers can legitimately be used for human linguistic modeling toward deepening our 

understanding of cognitive processing.
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➢ Figure 3: Psychometric Biases Introduced by Role-Playing Methods Designed to Bypass the Alignment of LLM.
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➢ Figure 6: Radar figures for the personality of Big Five Inventory.
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➢ Figure 2: Proficiency distribution across generating models…
➢ Figure 3: Proficiency distribution across augmentation 

experiments…
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➢ Figure5: Comparison between the transformer loop and the cortical-basal ganglia loop…

➢Quote:

I argue here that generative transformers, a key architectural 

feature of many large language models, demonstrate how 

neural networks can create temporal context and that a 

similar process is at work in biological brains.

Abbreviations:
AAT - apical amplification theory
CSD - current-source density
DIT - dendritic integration theory
EEG - electroencephalography
ET - extra-telencephalic
fMRI - functional magnetic 
resonance imaging

GWT - global workspace theory
HOTs - higher-order theories
IIT - integrated information theory
LFP - local field potential
MEG - magnetoencephalography
MR - magnetic resonance
RPT - recurrent processing theory
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